Fill in Blanks
Home
1.1 Bivariate Relationships
1.2 Probabilistic Models
1.3 Estimation of the Line
1.4 Properties of the Least Squares Estimators
1.5 Estimation of the Variance
2.1 The Normal Errors Model
2.2 Inferences for the Slope
2.3 Inferences for the Intercept
2.4 Correlation and Coefficient of Determination
2.5 Estimating the Mean Response
2.6 Predicting the Response
3.1 Residual Diagnostics
3.2 The Linearity Assumption
3.3 Homogeneity of Variance
3.4 Checking for Outliers
3.5 Correlated Error Terms
3.6 Normality of the Residuals
4.1 More Than One Predictor Variable
4.2 Estimating the Multiple Regression Model
4.3 A Primer on Matrices
4.4 The Regression Model in Matrix Terms
4.5 Least Squares and Inferences Using Matrices
4.6 ANOVA and Adjusted Coefficient of Determination
4.7 Estimation and Prediction of the Response
5.1 Multicollinearity and Its Effects
5.2 Adding a Predictor Variable
5.3 Outliers and Influential Cases
5.4 Residual Diagnostics
5.5 Remedial Measures
4.4 The Regression Model in Matrix Terms
"The essence of mathematics is not to make simple things complicated, but to make complicated things simple." - S. Gudder
Recall the normal error regression model (4.1) is
\begin{align*}
Y_{i}= & \beta_{0}+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\cdots+\beta_{p-1}X_{i,p-1}+\varepsilon_{i}\\
& \varepsilon\overset{iid}{\sim}N\left(0,\sigma^{2}\right)\qquad\qquad\qquad\qquad\qquad\qquad(4.1)
\end{align*}
for $i=1,\ldots,n$.
This implies: $$ \begin{align*} Y_{1} & =\beta_{0}+\beta_{1}X_{11}+\beta_{2}X_{12}+\cdots+\beta_{p-1}X_{1,p-1}+\varepsilon_{1}\\ Y_{2} & =\beta_{0}+\beta_{1}X_{21}+\beta_{2}X_{22}+\cdots+\beta_{p-1}X_{2,p-1}+\varepsilon_{2}\\ & \vdots\\ Y_{n} & =\beta_{0}+\beta_{1}X_{n1}+\beta_{2}X_{n2}+\cdots+\beta_{p-1}X_{n,p-1}+\varepsilon_{n} \end{align*} $$
This implies: $$ \begin{align*} Y_{1} & =\beta_{0}+\beta_{1}X_{11}+\beta_{2}X_{12}+\cdots+\beta_{p-1}X_{1,p-1}+\varepsilon_{1}\\ Y_{2} & =\beta_{0}+\beta_{1}X_{21}+\beta_{2}X_{22}+\cdots+\beta_{p-1}X_{2,p-1}+\varepsilon_{2}\\ & \vdots\\ Y_{n} & =\beta_{0}+\beta_{1}X_{n1}+\beta_{2}X_{n2}+\cdots+\beta_{p-1}X_{n,p-1}+\varepsilon_{n} \end{align*} $$
We define the response vector as
$$
\begin{align*}
\underset{n\times1}{\textbf{Y}}=\left[\begin{array}{c}
Y_{1}\\
Y_{2}\\
\vdots\\
Y_{n}
\end{array}\right]
\end{align*}
$$
We define the vector of random errors as
$$
\begin{align*}
\underset{n\times1}{\boldsymbol{\varepsilon}}=\left[\begin{array}{c}
\varepsilon_{1}\\
\varepsilon_{2}\\
\vdots\\
\varepsilon_{n}
\end{array}\right]
\end{align*}
$$
We define the vector of Coefficients as
$$
\begin{align*}
\underset{p\times1}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{0}\\
\beta_{1}\\
\vdots\\
\beta_{p-1}
\end{array}\right]
\end{align*}
$$
We define the matrix of the predictor variables as
$$
\begin{align*}
\underset{n\times p}{\textbf{X}}=\left[\begin{array}{cc}
1 & X_{11} & X_{12} & \cdots & X_{1,p-1}\\
1 & X_{21} & X_{22} & \cdots & X_{2,p-1}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1}
\end{array}\right]
\end{align*}
$$
Note that the first column of $\bf{X}$ is a vector of ones. This column will represent the coefficient of the y-intercept in the model.
We can now write the model as
$$
\begin{align*}
\underset{n\times1}{\textbf{Y}} & =\underset{n\times p}{\textbf{X}}\underset{p\times 1}{\boldsymbol{\beta}}+\underset{n\times1}{\boldsymbol{\varepsilon}}
\end{align*}
$$
since:
$$
\begin{align*}
\left[\begin{array}{c}
Y_{1}\\
Y_{2}\\
\vdots\\
Y_{n}
\end{array}\right] & =\left[\begin{array}{cc}
1 & X_{11} & X_{12} & \cdots & X_{1,p-1}\\
1 & X_{21} & X_{22} & \cdots & X_{2,p-1}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1}
\end{array}\right]\left[\begin{array}{c}
\beta_{0}\\
\beta_{1}\\
\vdots\\
\beta_{p-1}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1}\\
\varepsilon_{2}\\
\vdots\\
\varepsilon_{n}
\end{array}\right]\\
& =\left[\begin{array}{c}
\beta_{0}+\beta_{1}X_{11}+\beta_2X_{12}+\cdots+\beta_{p-1}X_{1,p-1}\\
\beta_{0}+\beta_{1}X_{21}+\beta_2X_{22}+\cdots+\beta_{p-1}X_{2,p-1}\\
\vdots\\
\beta_{0}+\beta_{1}X_{n1}+\beta_2X_{n2}+\cdots+\beta_{p-1}X_{n,p-1}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1}\\
\varepsilon_{2}\\
\vdots\\
\varepsilon_{n}
\end{array}\right]\\
& =\left[\begin{array}{c}
\beta_{0}+\beta_{1}X_{11}+\beta_2X_{12}+\cdots+\beta_{p-1}X_{1,p-1}+\varepsilon_{1}\\
\beta_{0}+\beta_{1}X_{21}+\beta_2X_{22}+\cdots+\beta_{p-1}X_{2,p-1}+\varepsilon_{2}\\
\vdots\\
\beta_{0}+\beta_{1}X_{n1}+\beta_2X_{n2}+\cdots+\beta_{p-1}X_{n,p-1}+\varepsilon_{n}
\end{array}\right]
\end{align*}
$$
The assumption on the normal error model for the random error term
is
\begin{align*}
\varepsilon\overset{iid}{\sim} & N\left(0,\sigma^{2}\right).
\end{align*}
In matrix notation, this can be expressed with the multivariate normal
distribution.
Note that the univariate normal distribution has a probability density function expressed as \begin{align*} f\left(x\right) & =\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2\sigma^{2}}\left(x-\mu\right)^{2}\right] \end{align*} where $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation.
The multivariate normal distribution is expressed as \begin{align*} f\left({\bf Y}\right) & =\frac{1}{\left(2\pi\right)^{n/2}\left|\boldsymbol{\Sigma}\right|^{1/2}}\exp\left[-\frac{1}{2}\left({\bf Y}-\boldsymbol{\mu}\right)^{\prime}\boldsymbol{\Sigma}^{-1}\left({\bf Y}-\boldsymbol{\mu}\right)\right] \end{align*} where ${\bf Y}$ is a $n\times1$ vector, $\boldsymbol{\mu}$ is a $n\times1$ vector of means, and $\boldsymbol{\Sigma}$ is the $n\times n$ covariance matrix.
We denote the multivariate normal distribution of a random vector ${\bf Y}$ as \begin{align*} {\bf Y} & \sim N_{n}\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right). \end{align*} For the normal error model, the mean vector of the random vector $\boldsymbol{\varepsilon}$ is a vector of zeros (${\bf 0}$) and the covariance matrix is \begin{align*} {\bf Cov}\left(\boldsymbol{\varepsilon}\right) & =\left[\begin{array}{cccc} \sigma^{2} & 0 & \cdots & 0\\ 0 & \sigma^{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sigma^{2} \end{array}\right]\\ & =\sigma^{2}{\bf I}. \end{align*}
Note that the univariate normal distribution has a probability density function expressed as \begin{align*} f\left(x\right) & =\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2\sigma^{2}}\left(x-\mu\right)^{2}\right] \end{align*} where $\mu$ is the mean of the distribution and $\sigma$ is the standard deviation.
The multivariate normal distribution is expressed as \begin{align*} f\left({\bf Y}\right) & =\frac{1}{\left(2\pi\right)^{n/2}\left|\boldsymbol{\Sigma}\right|^{1/2}}\exp\left[-\frac{1}{2}\left({\bf Y}-\boldsymbol{\mu}\right)^{\prime}\boldsymbol{\Sigma}^{-1}\left({\bf Y}-\boldsymbol{\mu}\right)\right] \end{align*} where ${\bf Y}$ is a $n\times1$ vector, $\boldsymbol{\mu}$ is a $n\times1$ vector of means, and $\boldsymbol{\Sigma}$ is the $n\times n$ covariance matrix.
We denote the multivariate normal distribution of a random vector ${\bf Y}$ as \begin{align*} {\bf Y} & \sim N_{n}\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right). \end{align*} For the normal error model, the mean vector of the random vector $\boldsymbol{\varepsilon}$ is a vector of zeros (${\bf 0}$) and the covariance matrix is \begin{align*} {\bf Cov}\left(\boldsymbol{\varepsilon}\right) & =\left[\begin{array}{cccc} \sigma^{2} & 0 & \cdots & 0\\ 0 & \sigma^{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sigma^{2} \end{array}\right]\\ & =\sigma^{2}{\bf I}. \end{align*}
We now represent the normal errors multiple regression model as
$$
\begin{align*}
{\textbf{Y}}= & {\textbf{X}}{\boldsymbol{\beta}}+{\boldsymbol{\varepsilon}}\\
& \boldsymbol{\varepsilon} \sim N_{n}\left({\bf 0},\sigma^{2}{\bf I}\right)\qquad (4.18)
\end{align*}
$$
Note that
$$
\begin{align*}
\textbf{E}\left(\textbf{Y}\right) & =\textbf{X}\boldsymbol{\beta}
\end{align*}
$$